

4-2 Mean Value Theorem

Learning Objectives:

I can apply the Mean Value Theorem to find a location for which the instantaneous slope equals the average slope.

I can identify when a function is increasing and when it is decreasing and I understanding the relationship between this and the derivative of the function.

I can find the antiderivative of a function.

Oct 16-11:24 AM

 β) Let f(x) = 4-3x. Which of the following is equal to f'(-1)?

a) -7 b) 7 c) -3 d) 3 e) does not exist

4) Let $f(x) = 1-3x^2$. Which of the following is equal to f'(1)?

a) -6 b) -5 c) 5 d) 6 e) does not exist

Mean Value Theorem (Part 1) If y = f(x) is connuous at every point in the closed interval [a,b] and differenable at every point in the open interval (a,b), then there is at least one point c in (a,b) such that

Oct 21-12:55 PM Oct 16-11:24 AM

Ex1. Show that each function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find a solution "c" to the equation $f'(c) = \frac{f(b) - f(a)}{b - a}$

1.)
$$f(x) = 3x^2 + 2x + 5$$
 on [-1,3]

2.) $f(x) = \sin(2x)$ on $\left[0, \frac{\pi}{4}\right]$

Oct 16-11:24 AM Oct 16-11:24 AM

Oct 16-11:24 AM

Increasing & Decreasing Functions

Increasing X₁ X₂

f is increasing if $x_1 < x_2$ and $f(x_1) < f(x_2)$ If f'(x) > 0 at each point in (a,b), then f increases on (a,b)

f is decreasing if $x_1 < x_2$ and $f(x_1) > f(x_2)$ If f'(x) < 0 at each point in (a,b), then f decreases on (a,b)

Oct 16-11:24 AM

Ex3. Find all possible functions with the given derivative

1.)
$$f'(x) = 6x^2 + 2x + 3$$

$$f(x) = 2x^3 + x^2 + 3x + C$$

2.)
$$g'(x) = \sec^2 x$$

 $g(x) = \tan x + C$

Oct 16-11:24 AM

Ex4. Find the function with the given derivative that passes through the given point

1.)
$$y'=3e^{3x}$$
 (0,4)
 $y = e^{3x} + C$
 $4 = e^{0} + C$
 $4 = 1 + C$
 $3 = C$ $y = e^{3x} + 3$

2.) h'(x) = 2x+5 (2,7) 7 = 4+10+6

Oct 16-11:24 AM

Homework

pg 202 # 1-4, 7, 9-14, 29-38, 43-45, 51-56